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DETERMINANTS OF THE SYSTEMS OF EQUATIONS OF
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Characteristic determinants and characteristic equations have been obtained for the systems of equations of
motion of isotropic thermoelastic media in stresses with allowance for the finite velocity of propagation of
thermal disturbances. The connectivity coefficients of the mechanical and thermal fields under problems of dif-
ferent dimension have been determined.

Introduction. Fundamental theoretical and practical investigations of the regularities of propagation of ther-
moelastic waves in generalized thermomechanics have been carried out by many authors. The best known of them are
[1–5] devoted to the application of the theory of plane waves to the systems of equations of motion of isotropic and
anisotropic media in displacements. However, thermoelastic stress waves possess a number of advantages over dis-
placement waves, which is confirmed by experiments [6]. In the present work, we have studied the regularities of
propagation of stress waves in a thermoelastic isotropic medium with the use of the classical characteristic method [7].

Characteristic Determinants. The equations of the dynamic theory of temperature stresses in the case of a
homogeneous isotropic body will be obtained from the equations of motion in displacements and the Hooke law (mass
forces are absent) [8]

µ∆3ui + (λ + µ) ∂i∂kuk = ρu
..

i + β∂iT ,   σij = (λekk − βT) δij + 2µeij , (1)

where u = (u1, u2, u3) is the displacement vector, T is the absolute temperature, eij = (∂iuj + ∂jui)/2 is the strain tensor,
∂i = ∂ ⁄ ∂xi, and ∆3 = ∂k

2; the points denote differentiation with respect to time; summation is carried out over the sub-
script k = 1, 3

___
; δij = 0, when i ≠ j = 1, 3

___
, and δij = 1, when i = j = 1, 3

___
.

Equations (1) yield the following system of equations:

µ∆3eij + (λ + µ) ∂i∂jekk = ρe
..

ij + β∂i∂jT ; (2)

eij = 



σij − 

λσkk − 2µβT

3λ + 2µ
 δij




  ⁄ 2µ ,   i, j = 1, 3

___
 . (3)

As a result of the substitution of (3) into (2) we obtain

(3λ + 2µ) 



∆3σij − 

ρσ
..

ij

µ



 − λ 




∆3σkk − 

ρσ
..

ij

µ



 δij + 2 (λ + µ) ∂i∂jσkk = 2βµ 









ρT
..

µ
 − ∆3T




 δij − ∂i∂jT




 ,   i, j = 1, 3

___
 . (4)

To close system (4) we add to it the hyperbolic heat-conduction equation [4]

K∆3T − cv (T
.
 + τT

..
) = βT0 (e

.
kk + τe

..
kk) . (5)

From (5), with the use of (3), we obtain
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K∆3T − 



cv + 

3β2
T0

3λ + 2µ




 (T

.
 + τT

..
) = βT0 (σ

.
kk + τσ

..
kk) ⁄ (3λ + 2µ) , (6)

or, taking into account that β = (3λ + 2µ)αT (αT is the coefficient of linear thermal expansion), we obtain

K∆3T − (cv + 3αT
2
T0 (3λ + 2µ)) (T

.
 + τT

..
) = αTT0 (σ

.
kk + τσ

..
kk) . (7)

We specify the initial data to system (4) and (7) on the hypersurface Z(t, x1, x2, x3) = 0 and pass to new vari-
ables according to the following scheme [7]:

Z = Z (t, x1, x2, x3) ,   Zi = Zi (t, x1, x2, x3) ,   i = 1, 3
___

 .

We express the derivatives with respect to the previous variables by the derivatives with respect to the new
variables and substitute them into (4) and (7):







(3λ + 2µ) 

∂2σij

∂Z
2  − 







λ 

∂2σkk

∂Z
2  − 2βµ 

∂2
T

∂Z
2







 δij







 






g3

2
 − 

ρp0
2

µ







 +

+ 2pipj 






(λ + µ) 

∂2σkk

∂Z
2  + βµ 

∂2
T

∂Z
2







 + ... = 0 ,   i, j = 1, 3

___
 ,







Kg3

2
 − 







cv + 

3β2
T0

3λ + 2µ







 p0

2






 
∂2

T

∂Z
2
 − 

τβT0p0
2

(3λ + 2µ)
 
∂2σkk

∂Z
2

 + ... = 0 ,

where p0 = 
∂Z

∂t
, pi = 

∂Z

∂xi
, i = 1, 3

___
, and g3

2 = pk
2.

The nonlinear differential equation of first order which must be satisfied by the characteristic surface Z(t,
x1, x2, x3) = 0 of system (4) and (7) will have the form

det NωijNi,j=1,3
___

 × det NζnmNn,m=1,4
___

 = 0 ,

where

ωii = g3
2
 − 

ρp0
2

µ
   (the remaining ωij are equal 

 
zero ,  i, j = 1, 3

___
) ,

ζnn = 2 (λ + µ) 



g3

2
 + pn

2
 − 

ρp0
2

µ




 ,   ζnm = 2 (λ + µ) pn

2
 − λ 




g3

2
 − 

ρp0
2

µ




 ,   ξ4n = − αTT0τp0

2
 ,

ζn4 = 2βµ 



g3

2
 − 

ρp0
2

µ
 + pn

2



 ,   ζ44 = Kg3

2
 − τp0

2
 (cv + 3αT

2
T0 (3λ + 2µ)) ,   n ≠ m = 1, 3

___
 .

The equality of the determinant det NωijNi,j=1,3
___

 to zero yields the existence of three discontinuity surfaces
propagating with the same velocity V = p0

 ⁄ g3 = √µ ⁄ ρ , which is equal to the velocity of propagation of a transverse
elastic wave c2. After simple transformations, the equality of the determinant det NζnmNn,m=1,4

___
 to zero will be written

as follows:
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





























2 (1 − a
2) ×

× 



1 + n1

2
 − 

v
2

a
2




 ,

2 (1 − a
2) n2

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

2 (1 − a
2) n3

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

− ε3n∗ v
2
 ,

   

2 (1 − a
2) n1

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

2 (1 − a
2) ×

× 



1 + n2

2
 − 

v
2

a
2




 ,

2 (1 − a
2) n3

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

− ε3n∗ v
2
 ,

   

2 (1 − a
2) n1

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

2 (1 − a
2) n2

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

2 (1 − a
2) ×

× 



1 + n3

2
 − 

v
2

a
2




 ,

− ε3n∗ v
2
 ,

   

2
3

 ((1 + n1
2) a2

 − v
2) ,

2
3

 ((1 + n2
2) a2

 − v
2) ,

2
3

 ((1 + n3
2) a2

 − v
2) ,

1 − n∗ v
2
 (1 + ε3) ,































 = 0 . (8)

Here a = c2
 ⁄ c1 is the ratio of the velocities of propagation of the longitudinal and transverse waves, c1 =

√ (λ + 2µ) ⁄ ρ , n∗  = τω∗  is the characteristic number of vibrations, ω∗  = cvc1
2 ⁄ K is the characteristic quantity having the

dimension of frequency, v = V ⁄ c1 is the dimensionless velocity of propagation of the discontinuity surface, ni = cos
αi = pi

 ⁄ g are the direction cosines of the normal to the characteristic surface, i = 1, 3
___

, and ε3 = 3β2T0
 ⁄ (3c1

2 − 4c2
2)Cv

= 3αT
2T (3λ + 2µ)/Cv is the connectivity coefficient for the three-dimensional interconnected problem of thermoelasticity

(dimensionless quantity dependent on the thermal and mechanical properties of material), Cv = cvρ.
The values of the connectivity coefficient ε3 which have been calculated from the numerical data of [9, 10]

are given for certain structural materials at a temperature of 20oC in Table 1.
Let us consider a plane dynamic problem of generalized interconnected thermoelasticity under plane strain

and take e33 = 0 for the sake of definiteness. In this case, the equations of motion of an isotropic medium in
stresses can be obtained either from (2) and (5) by the substitution of (3) or by the substitution of the expres-
sion σ33 = (λ (σ11 + σ22) − 2µβT/2 (λ + µ) into (4) and (6). After standard transformations, we obtain a system of
four differential equations for three independent components of the stresses σ11, σ12 = σ21,  and σ33 and the
temperature T:

(λ + 2µ) 



∆2σii − 

ρσ
..

ii

µ



 − λ 




∆2σjj − 

ρσ
..

ii

µ



 +

+ 2 (λ + µ) ∂i
2
 (σ11 + σ22) = 2β (ρT

..
 − µ∆2T) ,   i ≠ j = 1, 2 ,

TABLE 1. Values of the Thermomechanical Parameters

Thermomechanical quantity
Materials

aluminum copper steel lead

c1, m/sec 6260 4700 5800 2160

c2, m/sec 3080 2260 2530 700

K, W/(m⋅deg) 207 400 57 35

ε3 0.0526 0.0243 0.0153 0.0852

ε2 0.0470 0.0219 0.0141 0.0819

ε1 0.0356 0.0168 0.0114 0.0733

ω∗ , GHz [1] 466 173 175 191
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µ∆2σ12 − ρσ
..

12 + µ∂1∂2 (σ11 + σ22) = 0 ,

K∆2T − (T
.
 − τT

..
) 



cv + 

β2
T

λ + µ




 = βT0 (σ

.
11 + σ

.
22 + τ (σ

..
11 + σ

..
22)) ⁄ 2 (λ + µ) ,   ∆2 = ∂1

2
 + ∂2

2
 .

(9)

We specify the initial data to system (9) on the hyperplane Z(t, x1, x2) = 0, replace the variables, and substi-
tute the derivatives with respect to the new variables into (9):







g2

2
 − 

ρp0
2

µ







 






(λ + 2µ) 

∂2σii

∂Z
2  − λ 

∂2σjj

∂Z
2  + 2βµ 

∂2
T

∂Z
2







 +

+ 2 (λ + µ) pi
2
 







∂2σ11

∂Z
2  + 

∂2σ22

∂Z
2







 + ... = 0 ,   g2

2
 = p1

2
 + p2

2
 ,   i ≠ j = 1, 2 ;

(µg2
2
 − ρp0

2) 
∂2σ12

∂Z
2  + µp1p2 








∂2σ11

∂Z
2

 + 
∂2σ22

∂Z
2







 = 0 ;

Kg2
2
 − τp0

2
 



cv + 

β2
T

λ + µ




 
∂2

T

∂Z
2 = 

βT0p0
2τ

2 (λ + µ)
 







∂2σ11

∂Z
2  + 

∂2σ22

∂Z
2







 .

(10)

The equation of the characteristic hyperplane Z(t, x1, x2) = 0 of system (9) will be written as the equality to
zero of the determinant whose components are the coefficients of the partial derivatives of second order in Z in (10).
After simple transformations, we obtain

























1 − 
v

2

a
2 + 2 (1 − a

2) n1
2
 ,

2 (1 − a
2) n2

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

a
2
n1n2 ,

− ε2n∗ v
2
 ,

   

2 (1 − a
2) n1

2
 −

− (1 − 2a
2) 




1 − 

v
2

a
2




 ,

1 − 
v

2

a
2 + 2 (1 − a

2) n2
2
 ,

a
2
n1n2 ,

− ε2n∗ v
2
 ,

   

0 ,

0 ,

a
2
 − v

2
 ,

0 ,

   

a
2
 − v

2
 ,

a
2
 − v

2
 ,

0 ,

1 − n∗ v
2
 (1 + ε2) ,

























 = 0 , (11)

where ε2 = β2T0
 ⁄ Cv (c1

2 − c2
2) is the connectivity coefficient for the two-dimensional problem of interconnected ther-

moelasticity. The values of ε2 for four materials at a temperature of 20oC are given in Table 1.
The system of equations of the interconnected dynamic problem of thermoelasticity allows solutions de-

pendent on time and on one spatial coordinate and independent of the other coordinates. Thus, for example, in [3]
a study is made of the problems of dispersion and damping in the case of one-dimensional modes of propagation
of plane waves.

We will assume that motion occurs along the axis x1 B x. In this case the stress tensor is characterized by one
independent component σ11 = (λ + 2µ)e11 − βT; σ22 = σ33 = (λσ11 − 2µβT)/(λ + 2µ) and its other components are
equal to zero. Then from (4) and (7) we obtain

1122



c1
2∂1

2σ11 = σ
..

11 + 
βT
..

ρ
 ,   K∂1

2
T − 




cv + 

β2
T0

λ + 2µ




 (T

.
 + τT

..
) = βT0 (σ

.
 + τσ

..
) ⁄ (λ + 2µ) . (12)

The equation of the characteristic plane Z(t, x1) = 0 of system (12) will be written as follows (g1
2 = p1

2):













c1
2
g1

2
 = p0

2
 ,

− βT0τp0
2 ⁄ (λ + 2µ) ,

   
− βp0

2 ⁄ ρ ,

Kg1
2
 − 




cv + 

β2
T0

λ + 2µ




 p0

2













 = 0 .

Hence








1 − v
2
 ,

− ε1n∗ v
2
 ,
   

− v
2
 ,

1 − n∗ v
2
 (1 + ε1)







 = 0 , (13)

where ε1 = β2T0
 ⁄ Cvc1

2 is the connectivity coefficient for the interconnected one-dimensional dynamic problems of ther-
moelasticity. We note that ε1 is no different from the connectivity coefficient ε  (adopted in the theory of plane har-
monic thermoelastic displacement waves) for an isotropic thermoelastic body [1] (the values of ε1 = ε are given in
Table 1). The coefficient ε = β2T0

 ⁄ (cvA1) (A1 = λ + 2µ is the elasticity constant) is universally used in investigations
of the regularities of propagation of thermoelastic waves in both isotropic and anisotropic media irrespective of the di-
mension of the problem. However, as follows from the above computations, the connectivity coefficients in the dy-
namic problems of generalized thermomechanics in stresses are dissimilar; the connectivity coefficient increases with
dimension. We also note that another characteristic quantity, ω∗  = c1

2cv/K, has one and the same form irrespective of
the dimension of the system of equations of motion.

Solutions of the Characteristic Equations. Let us expand determinant (11):

(a2
 − v

2)2
 (n∗ v

2
 − v

2
 (1 + n∗  + n∗ ε2 − a

2
n∗ ε2) + 1) = 0 . (14)

This yields the existence of two thermoelastic wave propagating with velocities V1 = c1v1 and V2 = c1v2, where the
dimensionless velocities v1,2 are determined by the following expressions:

v1,2 = √(B2 & √B2
2 − n∗  ) ⁄ n∗  ,   2B2 = 1 + n∗  (1 + ε2 − a

2ε2) . (15)

Expression (14) also yields the existence of two elastic waves propagating with the same velocities, equal to
the velocity of propagation of the transverse wave c2.

The velocity V1 is the velocity of propagation of a modified thermal wave accompanied by the thermal field,
while the velocity V2 is that of a modified thermal wave accompanied by the strain field. To elucidate the manner in

Fig. 1. Velocities v1,2 as functions of the parameter n∗ : 1) aluminum; 2) cop-
per; 3) steel; 4) lead.
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which the interaction of the process of elastic strain and the process of heat conduction affects the behavior of ther-
moelastic waves we consider the velocities of propagation of thermoelastic waves v1,2 as functions of the parameter
n∗  (Fig. 1).

It follows from Fig. 1 that, when τ → 0, the velocity v1 of the modified elastic wave tends to the velocity of
propagation of the longitudinal elastic wave c1. As the relaxation time of the heat flux increases, the velocity v1 de-
creases as compared to c1, i.e., the influence of the finite velocity of propagation of thermal disturbances leads to a
decrease in the velocity of propagation of the longitudinal elastic wave. For low values of the parameter n∗  the veloc-
ity of the modified thermal wave v2 is much higher than the velocity c1 of the elastic wave; as n∗  increases, the ve-
locity v2 tends to a constant value insignificantly higher (≤5%) than the velocity c1.

Let us compare the velocities of propagation of thermoelastic waves v1,2 = V1,2
 ⁄ c1 and the velocity of propa-

gation of thermal disturbances VT = √ K ⁄ cvτ  = c1√n∗ . The dependences V1,2
 ⁄ VT for some materials from Table 1 are

plotted in Fig. 2.
It follows from the behavior of the functions V1,2

 ⁄ VT that the function of the velocity of propagation of ther-
mal disturbances is an asymptote to the functions of the velocities of propagation of thermoelastic waves V1 and V2.
Thus, whereas the velocity of the modified elastic wave tends to VT with increase in n∗ , the velocity of propagation
of the modified thermal wave is approximately equal to VT for low values of the parameter n∗  and it increases (as
compared to the velocity of thermal distances) with n∗ .

In the case of the one-dimensional model of a generalized interconnected thermal-elasticity problem from (13)
we obtain

v1,2 = √(1 + 1 ⁄ n + ε1 & √ 1 ⁄ n + 2 (ε1 − 1) + n (1 + ε1)
2  ) ⁄ 2  . (16)

for dimensionless velocities of propagation of thermoelastic waves. Expression (16) yields the existence of two ther-
moelastic waves; v1 is the velocity of propagation of a modified elastic wave and v2 is the velocity of propagation of
a modified thermal wave. The dependences of v1,2 on the parameter n∗  which have been plotted using (16) and the
numerical data of Table 1 exactly coincide with the analogous dependences (Fig. 1 and 2) in the case of the two-di-
mensional problem. However if we take the coefficient ε1 = ε instead of the connectivity coefficient ε2 in the two-di-
mensional problem, such a coincidence of the results is not observed. Figure 3 gives the dependences of the
dimensionless velocity v1(n∗ ) for aluminum when the connectivity coefficients in both formulas (16) and expressions
(15) are equal to ε1.

The velocities of propagation of the modified elastic wave in the one-dimensional and two-dimensional inter-
connected problems of generalized thermoelasticity markedly differ in the case of one and the same connectivity coef-
ficient ε1 when n∗  ≤ 1. The analogous behavior of the functions is observed for the dimensionless velocities of
propagation of modified thermal waves v2, which are determined by formulas (15) and (16) with a connectivity coef-
ficient ε1.

Fig. 2. Dependence of V1
 ⁄ VT (curves 1) and V2

 ⁄ VT (curves 2) on the parame-
ter n∗ : A, aluminum; B, lead.

Fig. 3. Velocity v1 as a function of the parameter n∗  for the same connectivity
coefficient ε1: 1) two-dimensional problem; 2) one-dimensional problem.
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From the characteristic determinants (8), (11), and (13), it is quite easy to obtain bicharacteristics for the cor-
responding systems of equations of motion and to show that the velocity of propagation of the discontinuity surface V
= vc1 is the ray (radial) velocity of propagation of thermoelastic waves. We add that this equality does not occur in
anisotropic media and the ray velocity is higher than the velocity of propagation of the discontinuity-surface front.

CONCLUSIONS

The employment of one and the same connectivity coefficient in dynamic problems of dissimilar dimensions
in spatial coordinates leads to a distortion of the results of investigation of wave motion in both isotropic and anisot-
ropic media. This is particularly important in generalized thermodynamics, since the relaxation time of the heat flux
for metals is an extremely small quantity (its value is of the order of 10−11 sec) and has not been determined with a
sufficient degree of accuracy.

NOTATION

λ and µ, Lame′  constants; c1 and c2, velocities of propagation of longitudinal and transverse waves; ρ, density;
β, thermomechanical constant; K, thermal conductivity; cv, specific heat at constant strain; τ, relaxation time of the
heat flux; T0, initial temperature.
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